Key Points
- ISC Class 12 Maths competency questions for 2026 are released by CISCE.
- ISC Class 12 Maths exam 2026 will be held on Monday, March 9, for 3 hours.
- Specimen papers are available to understand the exam pattern.
ISC Class 12 Mathematics Competency Focused Questions 2026 have been released to help students prepare according to the latest board exam pattern prescribed by the CISCE Board. These questions focus on testing conceptual understanding, logical reasoning, and problem-solving ability in Mathematics.
ISC Class 12 Maths Exam 2026 will be held on Monday, March 9, and the duration of the examination will be 3 hours. The Mathematics theory paper will be conducted for 80 marks as external assessment.
Students can now start solving competency-focused questions along with the specimen paper to understand the question format and marking scheme. Regular practice will help students improve accuracy, speed, and confidence before the final board examination.
In this article, we have provided ISC Class 12 Maths Competency Focused Questions PDF for students preparation for the board exam.
ISC Class 12 Mathematics Competency Focused Questions 2026: Key Highlights
Check the following table for the ISC Class 12 Exam 2026 details:
| Particulars | Details |
| Article Title | ISC Class 12 Mathematics Competency Focused Questions 2026 |
| Conducting Body | Council for the Indian School Certificate Examinations (CISCE) |
| Exam Level | ISC Class 12 |
| Subject | Mathematics |
| Paper | Theory Paper |
| Exam Date 2026 | Monday, March 9, 2026 |
| Exam Duration | 3 Hours |
| Maximum Marks | 80 Marks (External Assessment) |
| Related Resource | ISC Class 12 Mathematics Specimen Paper 2026 |
| Official Website |
ISC Class 12 Mathematics Competency Focused Questions 2026
| Question Number | Questions |
| 1 | $$ \text{If } a + \frac{\pi}{2} < 2 \tan^{-1} x + 3 \cot^{-1} x < b, \text{ then } a \text{ and } b \text{ are respectively:} $$ $$ $$ \text{If a matrix } A = \left[a_{ij}\right]_{2\times2}, \text{ where } a_{ij} = \begin{cases} 1, & i \neq j \\ 0, & i = j \end{cases}, \text{ then } A^{-1} \text{ is:} $$ $$ \text{If } h(x) = 4^{x} \text{ and } h^{-1}(x) = 2, \text{ then value of } x \text{ is:} $$ |
| 2 | $$ |
| 3 | Which one of the following is true? $$ $$ |
| 4 | $$ \text{If } a + \frac{\pi}{2} < 2 \tan^{-1} x + 3 \cot^{-1} x < b, \text{ then } a \text{ and } b \text{ are respectively:} $$ $$ $$ \text{If a matrix } A = \left[a_{ij}\right]_{2\times2}, \text{ where } a_{ij} = \begin{cases} 1, & i \neq j \\ 0, & i = j \end{cases}, \text{ then } A^{-1} \text{ is:} $$ (a) I |
| 5 | $$ \text{If } a + \frac{\pi}{2} < 2 \tan^{-1} x + 3 \cot^{-1} x < b, \text{ then } a \text{ and } b \text{ are respectively:} $$ $$ $$ \text{If a matrix } A = \left[a_{ij}\right]_{2\times2}, \text{ where } a_{ij} = \begin{cases} 1, & i \neq j \\ 0, & i = j \end{cases}, \text{ then } A^{-1} \text{ is:} $$ $$ \text{If } h(x) = 4^{x} \text{ and } h^{-1}(x) = 2, \text{ then value of } x \text{ is:} $$ $$ \text{If the value of } 3^{\text{rd}} \text{ order determinant is 5, then the value of determinant formed by replacing} $$ |
| 6 | $$ \text{If } a + \frac{\pi}{2} < 2 \tan^{-1} x + 3 \cot^{-1} x < b, \text{ then } a \text{ and } b \text{ are respectively:} $$ $$ $$ \text{If a matrix } A = \left[a_{ij}\right]_{2\times2}, \text{ where } a_{ij} = \begin{cases} 1, & i \neq j \\ 0, & i = j \end{cases}, \text{ then } A^{-1} \text{ is:} $$ $$ \text{If the value of } 3^{\text{rd}} \text{ order determinant is 5, then the value of determinant formed by replacing} $$ $$ \text{If } h(x) = 4^{x} \text{ and } h^{-1}(x) = 2, \text{ then value of } x \text{ is:} $$ $$ \text{If } A = \begin{bmatrix} 0 & 5 & -y \\ -5 & 0 & x \\ y & -x & 0 \end{bmatrix}, \text{ then the value of } A^{-1} \cdot (\text{adj } A)A \text{ is:} $$ |
| 7 | $$ \text{If } a + \frac{\pi}{2} < 2 \tan^{-1} x + 3 \cot^{-1} x < b, \text{ then } a \text{ and } b \text{ are respectively:} $$ $$ $$ \text{If a matrix } A = \left[a_{ij}\right]_{2\times2}, \text{ where } a_{ij} = \begin{cases} 1, & i \neq j \\ 0, & i = j \end{cases}, \text{ then } A^{-1} \text{ is:} $$ $$ \text{If the value of } 3^{\text{rd}} \text{ order determinant is 5, then the value of determinant formed by replacing} $$ $$ \text{If } h(x) = 4^{x} \text{ and } h^{-1}(x) = 2, \text{ then value of } x \text{ is:} $$ $$ \text{If } A = \begin{bmatrix} 0 & 5 & -y \\ -5 & 0 & x \\ y & -x & 0 \end{bmatrix}, \text{ then the value of } A^{-1} \cdot (\text{adj } A)A \text{ is:} $$ $$ \text{If } D = \begin{vmatrix} p & p & p \\ p & p + x & p \\ p & p & p + y \end{vmatrix} \text{ for } p \neq 0, x \neq 0, y \neq 0 \text{ then D is divisible by:} $$ |
| 8 | $$ \text{If } a + \frac{\pi}{2} < 2 \tan^{-1} x + 3 \cot^{-1} x < b, \text{ then } a \text{ and } b \text{ are respectively:} $$ $$ $$ \text{If a matrix } A = \left[a_{ij}\right]_{2\times2}, \text{ where } a_{ij} = \begin{cases} 1, & i \neq j \\ 0, & i = j \end{cases}, \text{ then } A^{-1} \text{ is:} $$ $$ \text{If the value of } 3^{\text{rd}} \text{ order determinant is 5, then the value of determinant formed by replacing} $$ $$ \text{If } h(x) = 4^{x} \text{ and } h^{-1}(x) = 2, \text{ then value of } x \text{ is:} $$ $$ \text{If } A = \begin{bmatrix} 0 & 5 & -y \\ -5 & 0 & x \\ y & -x & 0 \end{bmatrix}, \text{ then the value of } A^{-1} \cdot (\text{adj } A)A \text{ is:} $$ $$ \text{If } D = \begin{vmatrix} p & p & p \\ p & p + x & p \\ p & p & p + y \end{vmatrix} \text{ for } p \neq 0, x \neq 0, y \neq 0 \text{ then D is divisible by:} $$ $$ \text{If adj}(A) = \begin{bmatrix} 2 & 3 & 5 \\ x & 5 & 1 \\ 3 & 3 & 4 \end{bmatrix} \text{ and } |A| = 4, \text{ then the value of } x \text{ is:} $$ |
Students can download the ISC Class 12 Mathematics Competency Focused Questions 2026 PDF for effective preparation:
ISC Class 12 Mathematics Competency Focused Questions 2026 Download PDF |
ISC Class 12 Mathematics Exam Date 2026
ISC Class 12 Maths Exam 2026 is going to be held on Monday, March 9. The examination will be conducted for the Mathematics subject as per the official datesheet. Students should now start solving ISC Class 12 Maths Competency Focused Questions for better exam preparation and can download the ISC Class 12 Time Table 2026 PDF from the link given below.
| Monday, March 9 | Mathematics | ||
Click here: ISC Class 12 Exam Datesheet 2026
ISC Class 12 Mathematics Specimen Paper 2026
ISC Class 12 Mathematics Specimen Paper 2026 has been released by the CISCE Board to help students understand the latest exam pattern and question format for the upcoming board exam.
This specimen paper gives students a good idea of the types of questions that may appear in the final Mathematics theory paper and how marks are distributed.
By practising with this specimen paper, students can improve their problem-solving skills, time management, and confidence before the ISC Class 12 Mathematics exam.
Also Read:
ISC Class 12 Competency Focused Questions 2026
ISC Class 12 Physics Competency Focused Questions 2026
Comments
All Comments (0)
Join the conversation