ISC Class 12 Mathematics Competency Focused Questions 2026, Download PDF for Board Exam Preparation

Jan 31, 2026, 14:53 IST

ISC Class 12 Mathematics Competency Focused Questions 2026 help students prepare as per the CISCE exam pattern. With the exam scheduled on March 9, 2026, students can practise these questions and specimen papers regularly to improve accuracy, speed, and confidence for the final Mathematics board examination. Check this article to download the ISC Class 12 Maths Competency Focused Questions 2026 PDF.

ISC Class 12 Mathematics Competency Focused Questions 2026
ISC Class 12 Mathematics Competency Focused Questions 2026

Key Points

  • ISC Class 12 Maths competency questions for 2026 are released by CISCE.
  • ISC Class 12 Maths exam 2026 will be held on Monday, March 9, for 3 hours.
  • Specimen papers are available to understand the exam pattern.

ISC Class 12 Mathematics Competency Focused Questions 2026 have been released to help students prepare according to the latest board exam pattern prescribed by the CISCE Board. These questions focus on testing conceptual understanding, logical reasoning, and problem-solving ability in Mathematics. 

ISC Class 12 Maths Exam 2026 will be held on Monday, March 9, and the duration of the examination will be 3 hours. The Mathematics theory paper will be conducted for 80 marks as external assessment. 

Students can now start solving competency-focused questions along with the specimen paper to understand the question format and marking scheme. Regular practice will help students improve accuracy, speed, and confidence before the final board examination. 

In this article, we have provided ISC Class 12 Maths Competency Focused Questions PDF for students preparation for the board exam.

ISC Class 12 Mathematics Competency Focused Questions 2026: Key Highlights

Check the following table for the ISC Class 12 Exam 2026 details:

Particulars

Details

Article Title

ISC Class 12 Mathematics Competency Focused Questions 2026

Conducting Body

Council for the Indian School Certificate Examinations (CISCE)

Exam Level

ISC Class 12

Subject

Mathematics

Paper

Theory Paper

Exam Date 2026

Monday, March 9, 2026

Exam Duration

3 Hours

Maximum Marks

80 Marks (External Assessment)

Related Resource

ISC Class 12 Mathematics Specimen Paper 2026

Official Website

cisce.org 

ISC Class 12 Mathematics Competency Focused Questions 2026

Question Number

Questions

1

$$ \text{If } a + \frac{\pi}{2} < 2 \tan^{-1} x + 3 \cot^{-1} x < b, \text{ then } a \text{ and } b \text{ are respectively:} $$
$$
\begin{array}{l}
\text{(a) } \frac{\pi}{2} \text{ and } 2\pi \\
\text{(b) } \frac{\pi}{2} \text{ and } -\frac{\pi}{2} \\
\text{(c) } 0 \text{ and } \pi \\
\text{(d) } 0 \text{ and } 2\pi
\end{array}
$$

$$
\begin{array}{l}
\text{(a) } \sin \left(\cos^{-1} x\right) = \cos \left(\sin^{-1} x\right) \\
\text{(b) } \sec \left(\tan^{-1} x\right) = \tan \left(\sec^{-1} x\right) \\
\text{(c) } \cos \left(\tan^{-1} x\right) = \tan \left(\cos^{-1} x\right) \\
\text{(d) } \tan \left(\sin^{-1} x\right) = \sin \left(\tan^{-1} x\right)
\end{array}
$$

$$ \text{If a matrix } A = \left[a_{ij}\right]_{2\times2}, \text{ where } a_{ij} = \begin{cases} 1, & i \neq j \\ 0, & i = j \end{cases}, \text{ then } A^{-1} \text{ is:} $$
$$
\begin{array}{l}
\text{(a) } 5 \\
\text{(b) } \frac{1}{5} \\
\text{(c) } 125 \\
\text{(d) } 25
\end{array}
$$

$$ \text{If } h(x) = 4^{x} \text{ and } h^{-1}(x) = 2, \text{ then value of } x \text{ is:} $$
$$
\begin{array}{l}
\text{(a) } -4 \\
\text{(b) } 4 \\
\text{(c) } -16 \\
\text{(d) } 16
\end{array}
$$

2

$$
\begin{array}{l}
\text{If } a + \frac{\pi}{2} < 2 \tan^{-1} x + 3 \cot^{-1} x < b, \text{ then } a \text{ and } b \text{ are respectively:} \\
\text{(a) } \frac{\pi}{2} \text{ and } 2\pi \\
\text{(b) } \frac{\pi}{2} \text{ and } -\frac{\pi}{2} \\
\text{(c) } 0 \text{ and } \pi \\
\text{(d) } 0 \text{ and } 2\pi
\end{array}
$$

3

Which one of the following is true?

$$
\begin{array}{l}
\text{If } a + \frac{\pi}{2} < 2 \tan^{-1} x + 3 \cot^{-1} x < b, \text{ then } a \text{ and } b \text{ are respectively:} \\
\text{(a) } \frac{\pi}{2} \text{ and } 2\pi \\
\text{(b) } \frac{\pi}{2} \text{ and } -\frac{\pi}{2} \\
\text{(c) } 0 \text{ and } \pi \\
\text{(d) } 0 \text{ and } 2\pi
\end{array}
$$

$$
\begin{array}{l}
\text{(a) } \sin (\cos^{-1} x) = \cos (\sin^{-1} x) \\
\text{(b) } \sec (\tan^{-1} x) = \tan (\sec^{-1} x) \\
\text{(c) } \cos (\tan^{-1} x) = \tan (\cos^{-1} x) \\
\text{(d) } \tan (\sin^{-1} x) = \sin (\tan^{-1} x)
\end{array}
$$

4

$$ \text{If } a + \frac{\pi}{2} < 2 \tan^{-1} x + 3 \cot^{-1} x < b, \text{ then } a \text{ and } b \text{ are respectively:} $$
$$
\begin{array}{l}
\text{(a) } \frac{\pi}{2} \text{ and } 2\pi \\
\text{(b) } \frac{\pi}{2} \text{ and } -\frac{\pi}{2} \\
\text{(c) } 0 \text{ and } \pi \\
\text{(d) } 0 \text{ and } 2\pi
\end{array}
$$

$$
\begin{array}{l}
\text{(a) } \sin \left(\cos^{-1} x\right) = \cos \left(\sin^{-1} x\right) \\
\text{(b) } \sec \left(\tan^{-1} x\right) = \tan \left(\sec^{-1} x\right) \\
\text{(c) } \cos \left(\tan^{-1} x\right) = \tan \left(\cos^{-1} x\right) \\
\text{(d) } \tan \left(\sin^{-1} x\right) = \sin \left(\tan^{-1} x\right)
\end{array}
$$

$$ \text{If a matrix } A = \left[a_{ij}\right]_{2\times2}, \text{ where } a_{ij} = \begin{cases} 1, & i \neq j \\ 0, & i = j \end{cases}, \text{ then } A^{-1} \text{ is:} $$

(a) I
(b) A
(c) − AA
(d) − I

5

$$ \text{If } a + \frac{\pi}{2} < 2 \tan^{-1} x + 3 \cot^{-1} x < b, \text{ then } a \text{ and } b \text{ are respectively:} $$
$$
\begin{array}{l}
\text{(a) } \frac{\pi}{2} \text{ and } 2\pi \\
\text{(b) } \frac{\pi}{2} \text{ and } -\frac{\pi}{2} \\
\text{(c) } 0 \text{ and } \pi \\
\text{(d) } 0 \text{ and } 2\pi
\end{array}
$$

$$
\begin{array}{l}
\text{(a) } \sin \left(\cos^{-1} x\right) = \cos \left(\sin^{-1} x\right) \\
\text{(b) } \sec \left(\tan^{-1} x\right) = \tan \left(\sec^{-1} x\right) \\
\text{(c) } \cos \left(\tan^{-1} x\right) = \tan \left(\cos^{-1} x\right) \\
\text{(d) } \tan \left(\sin^{-1} x\right) = \sin \left(\tan^{-1} x\right)
\end{array}
$$

$$ \text{If a matrix } A = \left[a_{ij}\right]_{2\times2}, \text{ where } a_{ij} = \begin{cases} 1, & i \neq j \\ 0, & i = j \end{cases}, \text{ then } A^{-1} \text{ is:} $$

$$ \text{If } h(x) = 4^{x} \text{ and } h^{-1}(x) = 2, \text{ then value of } x \text{ is:} $$
$$
\begin{array}{l}
\text{(a) } -4 \\
\text{(b) } 4 \\
\text{(c) } -16 \\
\text{(d) } 16
\end{array}
$$

$$ \text{If the value of } 3^{\text{rd}} \text{ order determinant is 5, then the value of determinant formed by replacing} $$
$$ \text{its element by its co-factor is:} $$
$$
\begin{array}{l}
\text{(a) } 5 \\
\text{(b) } \frac{1}{5} \\
\text{(c) } 125 \\
\text{(d) } 25
\end{array}
$$

6

$$ \text{If } a + \frac{\pi}{2} < 2 \tan^{-1} x + 3 \cot^{-1} x < b, \text{ then } a \text{ and } b \text{ are respectively:} $$
$$
\begin{array}{l}
\text{(a) } \frac{\pi}{2} \text{ and } 2\pi \\
\text{(b) } \frac{\pi}{2} \text{ and } -\frac{\pi}{2} \\
\text{(c) } 0 \text{ and } \pi \\
\text{(d) } 0 \text{ and } 2\pi
\end{array}
$$

$$
\begin{array}{l}
\text{(a) } \sin \left(\cos^{-1} x\right) = \cos \left(\sin^{-1} x\right) \\
\text{(b) } \sec \left(\tan^{-1} x\right) = \tan \left(\sec^{-1} x\right) \\
\text{(c) } \cos \left(\tan^{-1} x\right) = \tan \left(\cos^{-1} x\right) \\
\text{(d) } \tan \left(\sin^{-1} x\right) = \sin \left(\tan^{-1} x\right)
\end{array}
$$

$$ \text{If a matrix } A = \left[a_{ij}\right]_{2\times2}, \text{ where } a_{ij} = \begin{cases} 1, & i \neq j \\ 0, & i = j \end{cases}, \text{ then } A^{-1} \text{ is:} $$

$$ \text{If the value of } 3^{\text{rd}} \text{ order determinant is 5, then the value of determinant formed by replacing} $$
$$ \text{its element by its co-factor is:} $$
$$
\begin{array}{l}
\text{(a) } 5 \\
\text{(b) } \frac{1}{5} \\
\text{(c) } 125 \\
\text{(d) } 25
\end{array}
$$

$$ \text{If } h(x) = 4^{x} \text{ and } h^{-1}(x) = 2, \text{ then value of } x \text{ is:} $$
$$
\begin{array}{l}
\text{(a) } -4 \\
\text{(b) } 4 \\
\text{(c) } -16 \\
\text{(d) } 16
\end{array}
$$

$$ \text{If } A = \begin{bmatrix} 0 & 5 & -y \\ -5 & 0 & x \\ y & -x & 0 \end{bmatrix}, \text{ then the value of } A^{-1} \cdot (\text{adj } A)A \text{ is:} $$
$$
\begin{array}{l}
\text{(a) } A^2 \\
\text{(b) } I \\
\text{(c) } 0 \\
\text{(d) } A
\end{array}
$$

7

$$ \text{If } a + \frac{\pi}{2} < 2 \tan^{-1} x + 3 \cot^{-1} x < b, \text{ then } a \text{ and } b \text{ are respectively:} $$
$$
\begin{array}{l}
\text{(a) } \frac{\pi}{2} \text{ and } 2\pi \\
\text{(b) } \frac{\pi}{2} \text{ and } -\frac{\pi}{2} \\
\text{(c) } 0 \text{ and } \pi \\
\text{(d) } 0 \text{ and } 2\pi
\end{array}
$$

$$
\begin{array}{l}
\text{(a) } \sin \left(\cos^{-1} x\right) = \cos \left(\sin^{-1} x\right) \\
\text{(b) } \sec \left(\tan^{-1} x\right) = \tan \left(\sec^{-1} x\right) \\
\text{(c) } \cos \left(\tan^{-1} x\right) = \tan \left(\cos^{-1} x\right) \\
\text{(d) } \tan \left(\sin^{-1} x\right) = \sin \left(\tan^{-1} x\right)
\end{array}
$$

$$ \text{If a matrix } A = \left[a_{ij}\right]_{2\times2}, \text{ where } a_{ij} = \begin{cases} 1, & i \neq j \\ 0, & i = j \end{cases}, \text{ then } A^{-1} \text{ is:} $$

$$ \text{If the value of } 3^{\text{rd}} \text{ order determinant is 5, then the value of determinant formed by replacing} $$
$$ \text{its element by its co-factor is:} $$
$$
\begin{array}{l}
\text{(a) } 5 \\
\text{(b) } \frac{1}{5} \\
\text{(c) } 125 \\
\text{(d) } 25
\end{array}
$$

$$ \text{If } h(x) = 4^{x} \text{ and } h^{-1}(x) = 2, \text{ then value of } x \text{ is:} $$
$$
\begin{array}{l}
\text{(a) } -4 \\
\text{(b) } 4 \\
\text{(c) } -16 \\
\text{(d) } 16
\end{array}
$$

$$ \text{If } A = \begin{bmatrix} 0 & 5 & -y \\ -5 & 0 & x \\ y & -x & 0 \end{bmatrix}, \text{ then the value of } A^{-1} \cdot (\text{adj } A)A \text{ is:} $$
$$
\begin{array}{l}
\text{(a) } A^2 \\
\text{(b) } I \\
\text{(c) } 0 \\
\text{(d) } A
\end{array}
$$

$$ \text{If } D = \begin{vmatrix} p & p & p \\ p & p + x & p \\ p & p & p + y \end{vmatrix} \text{ for } p \neq 0, x \neq 0, y \neq 0 \text{ then D is divisible by:} $$
$$
\begin{array}{l}
\text{(a) only p.} \\
\text{(b) p and x but not y.} \\
\text{(c) p and y but not x.} \\
\text{(d) p, x and y.}
\end{array}
$$

8

$$ \text{If } a + \frac{\pi}{2} < 2 \tan^{-1} x + 3 \cot^{-1} x < b, \text{ then } a \text{ and } b \text{ are respectively:} $$
$$
\begin{array}{l}
\text{(a) } \frac{\pi}{2} \text{ and } 2\pi \\
\text{(b) } \frac{\pi}{2} \text{ and } -\frac{\pi}{2} \\
\text{(c) } 0 \text{ and } \pi \\
\text{(d) } 0 \text{ and } 2\pi
\end{array}
$$

$$
\begin{array}{l}
\text{(a) } \sin \left(\cos^{-1} x\right) = \cos \left(\sin^{-1} x\right) \\
\text{(b) } \sec \left(\tan^{-1} x\right) = \tan \left(\sec^{-1} x\right) \\
\text{(c) } \cos \left(\tan^{-1} x\right) = \tan \left(\cos^{-1} x\right) \\
\text{(d) } \tan \left(\sin^{-1} x\right) = \sin \left(\tan^{-1} x\right)
\end{array}
$$

$$ \text{If a matrix } A = \left[a_{ij}\right]_{2\times2}, \text{ where } a_{ij} = \begin{cases} 1, & i \neq j \\ 0, & i = j \end{cases}, \text{ then } A^{-1} \text{ is:} $$

$$ \text{If the value of } 3^{\text{rd}} \text{ order determinant is 5, then the value of determinant formed by replacing} $$
$$ \text{its element by its co-factor is:} $$
$$
\begin{array}{l}
\text{(a) } 5 \\
\text{(b) } \frac{1}{5} \\
\text{(c) } 125 \\
\text{(d) } 25
\end{array}
$$

$$ \text{If } h(x) = 4^{x} \text{ and } h^{-1}(x) = 2, \text{ then value of } x \text{ is:} $$
$$
\begin{array}{l}
\text{(a) } -4 \\
\text{(b) } 4 \\
\text{(c) } -16 \\
\text{(d) } 16
\end{array}
$$

$$ \text{If } A = \begin{bmatrix} 0 & 5 & -y \\ -5 & 0 & x \\ y & -x & 0 \end{bmatrix}, \text{ then the value of } A^{-1} \cdot (\text{adj } A)A \text{ is:} $$
$$
\begin{array}{l}
\text{(a) } A^2 \\
\text{(b) } I \\
\text{(c) } 0 \\
\text{(d) } A
\end{array}
$$

$$ \text{If } D = \begin{vmatrix} p & p & p \\ p & p + x & p \\ p & p & p + y \end{vmatrix} \text{ for } p \neq 0, x \neq 0, y \neq 0 \text{ then D is divisible by:} $$
$$
\begin{array}{l}
\text{(a) only p.} \\
\text{(b) p and x but not y.} \\
\text{(c) p and y but not x.} \\
\text{(d) p, x and y.}
\end{array}
$$

$$ \text{If adj}(A) = \begin{bmatrix} 2 & 3 & 5 \\ x & 5 & 1 \\ 3 & 3 & 4 \end{bmatrix} \text{ and } |A| = 4, \text{ then the value of } x \text{ is:} $$
$$
\begin{array}{l}
\text{(a) } 16 \\
\text{(b) } 12 \\
\text{(c) } 32 \\
\text{(d) } 10
\end{array}
$$

Students can download the ISC Class 12 Mathematics Competency Focused Questions 2026 PDF for effective preparation: 

ISC Class 12 Mathematics Competency Focused Questions 2026 Download PDF

ISC Class 12 Mathematics Exam Date 2026

ISC Class 12 Maths Exam 2026 is going to be held on Monday, March 9. The examination will be conducted for the Mathematics subject as per the official datesheet. Students should now start solving ISC Class 12 Maths Competency Focused Questions for better exam preparation and can download the ISC Class 12 Time Table 2026 PDF from the link given below.

Monday, March 9

Mathematics

Click here: ISC Class 12 Exam Datesheet 2026

ISC Class 12 Mathematics Specimen Paper 2026

ISC Class 12 Mathematics Specimen Paper 2026 has been released by the CISCE Board to help students understand the latest exam pattern and question format for the upcoming board exam.

This specimen paper gives students a good idea of the types of questions that may appear in the final Mathematics theory paper and how marks are distributed.

By practising with this specimen paper, students can improve their problem-solving skills, time management, and confidence before the ISC Class 12 Mathematics exam.

Also Read: 

ISC Class 12 Competency Focused Questions 2026

ISC Class 12 Physics Competency Focused Questions 2026

ISC Class 12 Biology Competency Focused Questions 2026

ISC Class 12 Chemistry Competency Focused Questions 2026

Aayesha Sharma is a Content Writer at Jagran Josh, specializing in the School Category. She holds a degree in Journalism and Mass Communication from the Institute of Management Studies, Ghaziabad. With 2 years of experience in education writing. She has strong experience in the education sector and covers CBSE, State Boards, and NEET exams, especially during important times like results and exam updates, helping students and parents stay informed with clear and reliable information. For any queries, you can reach her at aayesha.sharma@jagrannewmedia.com.

... Read More

Get here latest School, CBSE and Govt Jobs notification and articles in English and Hindi for Sarkari Naukari, Sarkari Result and Exam Preparation. Empower your learning journey with Jagran Josh App - Your trusted guide for exams, career, and knowledge! Download Now

Trending

Latest Education News